/* * Author: AnalysIR via https://www.AnalysIR.com/ * * Date: 1st October 2015 V1.0 * * License: Creative Commons, Attribution-NonCommercial-ShareAlike 4.0 International * http://creativecommons.org/licenses/by-nc-sa/4.0/ * * For Commercial use or alternative License: Please contact the Author, via the website above * * Attribution: Please credit the Author on all media and provide a link to https://www.AnalysIR.com/ * * Feedback: We would love to hear about how you use this software & suggestions for improvement. * * Tested with Arduino IDE 1.6.5. Board: ESP8266 NodeMCU 1.0 (ESP-12E Module), 80 MHz, Serial 115200, 4M(3M SPIFFS) on COMxx, IDE ESP8266 Boards Manager 2.3.0 * * Questions & Issues via: https://IRforum.AnalysIR.com/ for uPWM & IR related queries only (excludes IDE, WiFi & NodeMCU support which should be directed to the appropriate forum) * * Assumes familiarity with ESP8266 NodeMCU & Arduino IDE * */ #include "uart_register.h" #include <ESP8266WiFi.h> //ESP esp; //set true for Micro-controller system being used, set all others to false #define ESP8266PLATFORM true //set to true for ESP8266 platform //please verify this for your own particular platform #define TX D4 //ESP8266 UART Serial1 Tx pin D4...also ... GPIO2/TXD1 unsigned char carrierFreq = 0; //default unsigned char DUTY = 0xF0; //50% default unsigned int cycleCount = 0; unsigned long sigTime = 0; //used in mark & space functions to keep track of time unsigned long sigStart = 0; //used to calculate correct length of existing signal, to handle some repeats unsigned char sigNo = 0; //RAW NEC signal - 32 bit with 1 repeat - make sure buffer starts with a Mark unsigned int NEC_RAW[] = {9000, 4500, 560, 560, 560, 560, 560, 1690, 560, 560, 560, 560, 560, 560, 560, 560, 560, 560, 560, 1690, 560, 1690, 560, 560, 560, 1690, 560, 1690, 560, 1690, 560, 1690, 560, 1690, 560, 560, 560, 560, 560, 1690, 560, 560, 560, 560, 560, 560, 560, 1690, 560, 560, 560, 1690, 560, 1690, 560, 560, 560, 1690, 560, 1690, 560, 1690, 560, 560, 560, 1690, 560, 39980, 9000, 2232, 560}; //AnalysIR Batch Export (IRremote) - RAW #define NEC_HEX_VALUE 0x20DF22DDL #define NEC_BIT_COUNT 32 //#define LED D7 //can be on different pins, depending on platform (please veryify) //For the purposes of this demo code, we send data over serial, which also blinks the LED - on the test board at least, so we dont need it for now //RAW Mitsubishi 88 bit signal - make sure buffer starts with a Mark unsigned int Mitsubishi88AC_RAW[] = {3172, 1586, 394, 394, 394, 1182, 394, 394, 394, 394, 394, 1182, 394, 394, 394, 1182, 394, 394, 394, 394, 394, 1182, 394, 1182, 394, 1182, 394, 394, 394, 1182, 394, 394, 394, 1182, 394, 1182, 394, 1182, 394, 394, 394, 394, 394, 394, 394, 394, 394, 1182, 394, 1182, 394, 394, 394, 1182, 394, 1182, 394, 394, 394, 394, 394, 1182, 394, 394, 394, 394, 394, 1182, 394, 394, 394, 394, 394, 1182, 394, 1182, 394, 394, 394, 1182, 394, 1182, 394, 1182, 394, 1182, 394, 1182, 394, 1182, 394, 1182, 394, 1182, 394, 1182, 394, 1182, 394, 394, 394, 394, 394, 394, 394, 394, 394, 394, 394, 394, 394, 394, 394, 394, 394, 1182, 394, 1182, 394, 1182, 394, 1182, 394, 1182, 394, 1182, 394, 394, 394, 1182, 394, 394, 394, 394, 394, 394, 394, 394, 394, 394, 394, 394, 394, 1182, 394, 394, 394, 394, 394, 1182, 394, 1182, 394, 1182, 394, 1182, 394, 1182, 394, 394, 394, 1182, 394, 1182, 394, 394, 394, 394, 394, 394, 394, 394, 394, 394, 394, 1182, 394, 394, 394}; //AnalysIR Batch Export (IRremote) - RAW //Mitsubishi 88 bit signal - HEX value unsigned char Mitsubishi88AC_Hex[] = {0x4A, 0x75, 0xC3, 0x64, 0x9B, 0xFF, 0x00, 0xFD, 0x02, 0x7D, 0x82}; void setup() { //pinMode(LED, OUTPUT); pinMode(TX, OUTPUT); digitalWrite(TX, LOW); Serial.begin(115200); Serial.print("IR emittter output on Serial1 TX pin: "); Serial.println(TX); initDutyCycle(50); //set to 40% as default, change this as you like to one of the permitted values } void loop() { //just send example signals ever 5 seconds at a range of carrier frequencies ESP.wdtFeed(); //avoid watchdog issues switch (sigNo) { case 0 : //30 //First send the NEC RAW signal defined above Serial.println(F("Sending NEC_RAW @ 30kHz")); sendRawBuf(NEC_RAW, sizeof(NEC_RAW) / sizeof(NEC_RAW[0]), 30); break; case 1 : //33 //Next send the Mitsubishi AC RAW signal defined above Serial.println(F("Sending Mitsubishi88AC_RAW @ 33kHz")); sendRawBuf(Mitsubishi88AC_RAW, sizeof(Mitsubishi88AC_RAW) / sizeof(Mitsubishi88AC_RAW[0]), 33); break; case 2 : //36 //Next send the Mitsubishi88AC_Hex signal defined above Serial.println(F("Sending Mitsubishi88AC_Hex @ 36kHz")); sendHexMITSUBISHI88AC(Mitsubishi88AC_Hex, sizeof(Mitsubishi88AC_Hex) / sizeof(Mitsubishi88AC_Hex[0]), 36); break; case 3 : //38 //Next send the NEC_HEX_VALUE signal defined above Serial.println(F("Sending NEC_HEX_VALUE @ 38kHz")); sendHexNEC(NEC_HEX_VALUE, NEC_BIT_COUNT, 1, 38); break; case 4 : //40 //Next send the Mitsubishi88AC_Hex signal defined above Serial.println(F("Sending NEC_HEX_VALUE @ 40kHz")); sendHexNEC(NEC_HEX_VALUE, NEC_BIT_COUNT, 1, 40); break; case 5 : //56 //Next send the Mitsubishi88AC_Hex signal defined above Serial.println(F("Sending Mitsubishi88AC_Hex @ 56kHz")); sendHexMITSUBISHI88AC(Mitsubishi88AC_Hex, sizeof(Mitsubishi88AC_Hex) / sizeof(Mitsubishi88AC_Hex[0]), 56); break; /* you can have any number of case statements */ // default : /* Optional */ // statement(s); } delay(5000); //wait 5 seconds between each signal (change to suit) sigNo++; if (sigNo > 5) sigNo = 0; //sigNo = 0; //debug to force sig 0 every time } void sendRawBuf(unsigned int *sigArray, unsigned int sizeArray, unsigned char kHz) { //digitalWrite(LED,HIGH); //blink LED for every signal - not needed ESP.wdtFeed(); //avoid watchdog issues initUPWM(kHz); //we only need to re-initialise if it has changed from last signal sent sigTime = micros(); //keeps rolling track of signal time to avoid impact of loop & code execution delays for (int i = 0; i < sizeArray; i++) { mark(sigArray[i++]); //also move pointer to next position if (i < sizeArray) { //check we have a space remaining before sending it space(sigArray[i]); //pointer will be moved by for loop } } //digitalWrite(LED,LOW); //blink LED for every signal - not needed } void sendHexNEC(unsigned long sigCode, byte numBits, unsigned char repeats, unsigned char kHz) { /* A basic 32 bit NEC signal is made up of: * 1 x 9000 uSec Header Mark, followed by * 1 x 4500 uSec Header Space, followed by * 32 x bits uSec ( 1- bit 560 uSec Mark followed by 1690 uSec space; 0 - bit 560 uSec Mark follwed by 560 uSec Space) * 1 x 560 uSec Trailer Mark * There can also be a generic repeat signal, which is usually not neccessary & can be replaced by sending multiple signals */ #define NEC_HEADER_MARK 9000 #define NEC_HEADER_SPACE 4500 #define NEC_ONE_MARK 560 #define NEC_ZERO_MARK 560 #define NEC_ONE_SPACE 1690 #define NEC_ZERO_SPACE 560 #define NEC_TRAILER_MARK 560 ESP.wdtFeed(); //avoid watchdog issues //digitalWrite(LED,HIGH); //blink LED for every signal - not needed; unsigned long bitMask = (unsigned long) 1 << (numBits - 1); //allows for signal from 1 bit up to 32 bits // if (carrierFreq != kHz) initUPWM(kHz); //we only need to re-initialise if it has changed from last signal sent sigTime = micros(); //keeps rolling track of signal time to avoid impact of loop & code execution delays sigStart = sigTime; //remember for calculating first repeat gap (space), must end 108ms after signal starts // First send header Mark & Space mark(NEC_HEADER_MARK); space(NEC_HEADER_SPACE); while (bitMask) { if (bitMask & sigCode) { //its a One bit mark(NEC_ONE_MARK); space(NEC_ONE_SPACE); } else { // its a Zero bit mark(NEC_ZERO_MARK); space(NEC_ZERO_SPACE); } bitMask = (unsigned long) bitMask >> 1; // shift the mask bit along until it reaches zero & we exit the while loop } // Last send NEC Trailer MArk mark(NEC_TRAILER_MARK); //now send the requested number of NEC repeat signals. Repeats can be useful for certain functions like Vol+, Vol- etc /* A repeat signal consists of * A space which ends 108ms after the start of the last signal in this sequence * 1 x 9000 uSec Repeat Header Mark, followed by * 1 x 2250 uSec Repeat Header Space, followed by * 32 x bits uSec ( 1- bit 560 uSec Mark followed by 1690 uSec space; 0 - bit 560 uSec Mark followed by 560 uSec Space) * 1 x 560 uSec repeat Trailer Mark */ //First calculate length of space for first repeat //by getting length of signal to date and subtracting from 108ms if (repeats == 0) return; //finished - no repeats else if (repeats > 0) { //first repeat must start 108ms after first signal space(108000 - (sigTime - sigStart)); //first repeat Header should start 108ms after first signal mark(NEC_HEADER_MARK); space(NEC_HEADER_SPACE / 2); //half the length for repeats mark(NEC_TRAILER_MARK); } while (--repeats > 0) { //now send any remaining repeats space(108000 - NEC_HEADER_MARK - NEC_HEADER_SPACE / 2 - NEC_TRAILER_MARK); //subsequent repeat Header must start 108ms after previous repeat signal mark(NEC_HEADER_MARK); space(NEC_HEADER_SPACE / 2); //half the length for repeats mark(NEC_TRAILER_MARK); } //interrupts(); //digitalWrite(LED,LOW); //blink LED for every signal - not needed } void sendHexMITSUBISHI88AC(unsigned char *sigArray, unsigned int sizeArray, unsigned char kHz) { //Mitsubish 88 bit Ir protocol format /* A basic 88 bit NEC-'like' signal is made up of: * 1 x 3172 uSec Header Mark, followed by * 1 x 1586 uSec Header Space, followed by * 32 x bits uSec ( 1- bit 394 uSec Mark followed by 1182 uSec space; 0 - bit 394 uSec Mark followed by 394 uSec Space) * 1 x 9000 uSec Trailer Mark * There can also be a generic repeat signal, which is usually not neccessary & can be replaced by sending multiple signals */ #define MITSUBISHI88AC_HEADER_MARK 3172 #define MITSUBISHI88AC_HEADER_SPACE 1586 #define MITSUBISHI88AC_ONE_MARK 394 #define MITSUBISHI88AC_ZERO_MARK 394 #define MITSUBISHI88AC_ONE_SPACE 1182 #define MITSUBISHI88AC_ZERO_SPACE 394 #define MITSUBISHI88AC_TRAILER_MARK 394 ESP.wdtFeed(); //avoid watchdog issues // digitalWrite(LED,HIGH); //blink LED for every signal - not needed // if (carrierFreq != kHz) initUPWM(kHz); //we only need to re-initialise if it has changed from last signal sent sigTime = micros(); //keeps rolling track of signal time to avoid impact of loop & code execution delays // First send header Mark & Space mark(MITSUBISHI88AC_HEADER_MARK); space(MITSUBISHI88AC_HEADER_SPACE); for (unsigned int i = 0; i < sizeArray; i++) { //iterate thru each byte in sigArray register unsigned char bitMask = 0x80; //starting value of bitmask fo each Hex byte while (bitMask) { //do 8 times for each bit of the 8 bit byte if (bitMask & sigArray[i]) { //its a One bit mark(MITSUBISHI88AC_ONE_MARK); space(MITSUBISHI88AC_ONE_SPACE); } else { // its a Zero bit mark(MITSUBISHI88AC_ZERO_MARK); space(MITSUBISHI88AC_ZERO_SPACE); } bitMask = (unsigned char) bitMask >> 1; // shift the mask bit along until it reaches zero & we exit the while loop } } // Last send NEC Trailer MArk mark(MITSUBISHI88AC_TRAILER_MARK); //digitalWrite(LED,LOW); //blink LED for every signal - not needed } void initUPWM(unsigned char carrier) { // Assumes standard 8-bit Arduino, running at 16Mhz //supported values are 30, 33, 36, 38, 40, 56 kHz, any other value defaults to 38kHz //duty cycle is limited to 50, 40, 30, 20, 10 % - other values will be set to 40% switch (carrier) { // set the baud rate to 10 time the carrier frequency case 30 : // 30kHz Serial1.begin(300000); break; case 33 : // 33kHz Serial1.begin(330000); break; case 36 : // 36kHz Serial1.begin(360000); break; case 40 : // 40kHz Serial1.begin(400000); break; case 56 : // 56kHz Serial1.begin(560000); break; case 38 : //default is 38kHz default : Serial1.begin(380000); break; } #define SET_PERI_REG_MASK(reg, mask) WRITE_PERI_REG((reg), (READ_PERI_REG(reg)|(mask))) SET_PERI_REG_MASK(UART_CONF0(UART1) , BIT22); carrierFreq = carrier; } void initDutyCycle(unsigned char dutyCycle) { //now do Duty cycle - we simply set the character to be sent, which creates the duty cycle for us. switch (dutyCycle) { case 50 : //50% DUTY = 0xF0; break; case 40 : // 40% DUTY = 0xF8; break; case 30 : // 30% DUTY = 0xFC; break; case 20 : // 20% DUTY = 0xFE; break; case 10 : // 10% DUTY = 0xFF; break; default : // 50% for any invalid values DUTY = 0xF0; break; } } void mark(unsigned int mLen) { //uses sigTime as end parameter sigTime += mLen; //mark ends at new sigTime unsigned long startTime = micros(); unsigned long dur = sigTime - startTime; //allows for rolling time adjustment due to code execution delays if (dur == 0) return; unsigned int cycleCount = dur / ((1000 + carrierFreq / 2) / carrierFreq); // get number of cycles & do rounding with integer maths ESP.wdtFeed(); //avoid watchdog issues while (cycleCount) { // while (true) { //send continuous carrier, for testing, signal generator or just generic PWM Serial1.write(DUTY); //write a character to emulate carrier, character value determines duty cycle. --cycleCount; if ((cycleCount ^ 0x1F) == 0)ESP.wdtFeed(); //avoid watchdog issues } while ((micros() - startTime) < dur) {} //just wait here until time is up } void space(unsigned int sLen) { //uses sigTime as end parameter sigTime += sLen; //space ends at new sigTime unsigned long startTime = micros(); unsigned long dur = sigTime - startTime; //allows for rolling time adjustment due to code execution delays if (dur == 0) return; unsigned int cycleCount = 0; // ESP.wdtFeed(); //avoid watchdog issues while ((micros() - startTime) < dur) { //just wait here until time is up if ((cycleCount++ ^ 0x1f) == 0)ESP.wdtFeed(); //avoid watchdog issues } }